4000-520-616
欢迎来到免疫在线!(蚂蚁淘生物旗下平台)  请登录 |  免费注册 |  询价篮
Avanti(优势品牌)
主营:主营 1000 种以上脂类产品、磷脂类和甾体类中间体、试剂等
咨询热线电话
4000-520-616
当前位置: 首页 > 产品中心 > lipid > avanti极性脂质/1,2-二苯基-sn-甘油-3-磷酸胆碱/1 x 500mg 25mg/mL 20mL/850356C-500mg
商品详细avanti极性脂质/1,2-二苯基-sn-甘油-3-磷酸胆碱/1 x 500mg 25mg/mL 20mL/850356C-500mg
avanti极性脂质/1,2-二苯基-sn-甘油-3-磷酸胆碱/1 x 500mg 25mg/mL 20mL/850356C-500mg
avanti极性脂质/1,2-二苯基-sn-甘油-3-磷酸胆碱/1 x 500mg 25mg/mL 20mL/850356C-500mg
商品编号: 850356C-500mg
品牌: Avanti
市场价: ¥20600.00
美元价: 15450.00
产地: 美国(厂家直采)
公司:
产品分类: 脂类
公司分类: lipid
联系Q Q: 3392242852
电话号码: 4000-520-616
电子邮箱: info@ebiomall.com
商品介绍

850356 | 4ME 16:0 PC

1,2-diphytanoyl-sn-glycero-3-phosphocholine

4ME 16:0 PC
Info

4ME 16:0 PC

1,2-diphytanoyl-sn-glycero-3-phosphocholine

Lipids containing diphytanoyl fatty acid chains have been used to produce stable planar lipid membranes (see References). Diphytanoyl phosphatidylcholine does not exhibit a detectable gel to liquid crystalline phase transition from -120°C to +120°C.

The list of Phosphatidylcholine products offered by Avanti is designed to provide compounds having a variety of physical properties. Products available include short chain (C3-C8 are water soluble and hygroscopic), saturated, multi-unsaturated and mixed acid PC"s. All of the products are purified by HPLC, and special precautions are taken to protect the products from oxidization and hydrolysis. Several of these products are manufactured under the current guidelines of Good Manufacturing Practice and are available for pharmaceutical use. If you have a requirement for a choline derivative not found on our list, please call us: custom synthesis is one of our specialties.

Data
Hygroscopic
No
Light Sensitive
No
Molecular Formula
C48H96NO8P
Percent Composition
C 68.13%, H 11.43%, N 1.66%, O 15.12%, P 3.66%
Purity
>99%
Stability
1 Years
Storage Temperature
-20°C
CAS Number
207131-40-6 CAS Registry Number is a Registered Trademark of the American Chemical Society
FormulaWeight
846.252
Exact Mass
845.687
Synonyms
<p>1,2-di-(3,7,11,15-tetramethylhexadecanoyl)-sn-glycero-3-phosphocholinePC(16:0(3me,7me,11me,15me)/16:0(3me,7me,11me,15me))</p>
Downloads
  • ChemDraw File
  • 3D Structure
  • Structure
  • Transition Temperature Of Diphytanoyl Pc
  • Safety Data Sheet
  • Safety Data Sheet
References

Knapp O, Maier E, Piselli C, Benz R, Hoxha C, Popoff MR. Central residues of the amphipathic β-hairpin loop control the properties of Clostridium perfringens epsilon-toxin channel. Biochim Biophys Acta Biomembr. 2020 Sep 1;1862(9):183364. doi: 10.1016/j.bbamem.2020.183364. Epub 2020 May 22. PMID: 32450142.

PubMed ID: 32450142

Jansen KB, Inns PG, Housden NG, Hopper JTS, Kaminska R, Lee S, Robinson CV, Bayley H, Kleanthous C. Bifurcated binding of the OmpF receptor underpins import of the bacteriocin colicin N into Escherichia coli. J Biol Chem. 2020 May 12:jbc.RA120.013508. doi: 10.1074/jbc.RA120.013508. Epub ahead of print. PMID: 32398259.

PubMed ID: 32398259

Soysa HSM, Aunkham A, Schulte A, Suginta W. Single-channel properties, sugar specificity, and role of chitoporin in adaptive survival of Vibrio cholerae type strain O1. J Biol Chem. 2020 May 14:jbc.RA120.012921. doi: 10.1074/jbc.RA120.012921. Epub ahead of print. PMID: 32409576.

PubMed ID: 32409576

Esteras N, Kundel F, Amodeo GF, Pavlov EV, Klenerman D, Abramov AY. Insoluble tau aggregates induce neuronal death through modification of membrane ion conductance, activation of voltage-gated calcium channels and NADPH oxidase. FEBS J. 2020 Apr 27. doi: 10.1111/febs.15340. Epub ahead of print. PMID: 32338825.

PubMed ID: 32338825

Bafna JA, Sans-Serramitjana E, Acosta-Gutiérrez S, Bodrenko IV, Hörömpöli D, Berscheid A, Brötz-Oesterhelt H, Winterhalter M, Ceccarelli M. Kanamycin Uptake into Escherichia coli Is Facilitated by OmpF and OmpC Porin Channels Located in the Outer Membrane. ACS Infect Dis. 2020 May 20. doi: 10.1021/acsinfecdis.0c00102. Epub ahead of print. PMID: 32369342.

PubMed ID: 32369342

Lei J, Huang Y, Zhong W, Xiao D, Zhou C. Early Monitoring Drug Resistant Mutation T790M with a Two-Dimensional Simultaneous Discrimination Nanopore Strategy. Anal Chem. 2020 Jun 8. doi: 10.1021/acs.analchem.0c00575. Epub ahead of print. PMID: 32452671.

PubMed ID: 32452671

Wei X, Ma D, Zhang Z, Wang LY, Gray JL, Zhang L, Zhu T, Wang X, Lenhart BJ, Yin Y, Wang Q, Liu C. N-Terminal Derivatization-Assisted Identification of Individual Amino Acids Using a Biological Nanopore Sensor. ACS Sens. 2020 May 26. doi: 10.1021/acssensors.0c00345. Epub ahead of print. PMID: 32403927.

PubMed ID: 32403927

Rosen CB, Bayley H, Rodriguez-Larrea D. Free-energy landscapes of membrane co-translocational protein unfolding. Commun Biol. 2020 Apr 3;3(1):160. doi: 10.1038/s42003-020-0841-4. PMID: 32246057; PMCID: PMC7125183.

PubMed ID: 32246057

Feng J, Martin-Baniandres P, Booth MJ, Veggiani G, Howarth M, Bayley H, Rodriguez-Larrea D. Transmembrane protein rotaxanes reveal kinetic traps in the refolding of translocated substrates. Commun Biol. 2020 Apr 3;3(1):159. doi: 10.1038/s42003-020-0840-5. PMID: 32246060; PMCID: PMC7125113.

PubMed ID: 32246060

Li SP, Zhang YC, Hu FZ, Sabaretnam T, Guillemin GJ, Zou AH. Application of N-methyl-D-aspartate receptor nanopore in screening ligand molecules. Bioelectrochemistry. 2020 Aug;134:107534. doi: 10.1016/j.bioelechem.2020.107534. Epub 2020 Apr 17. PMID: 32335354.

PubMed ID: 32335354

Wongsirojkul N, Shimokawa N, Opaprakasit P, Takagi M, Hamada T. Osmotic-Tension-Induced Membrane Lateral Organization. Langmuir. 2020 Mar 24;36(11):2937-2945. doi: 10.1021/acs.langmuir.9b03893. Epub 2020 Mar 16. PMID: 32175748.

PubMed ID: 32175748

Fischer S, Ückert AK, Landenberger M, Papatheodorou P, Hoffmann-Richter C, Mittler AK, Ziener U, Hägele M, Schwan C, Müller M, Kleger A, Benz R, Popoff MR, Aktories K, Barth H. Human peptide α-defensin-1 interferes with Clostridioides difficile toxins TcdA, TcdB, and CDT. FASEB J. 2020 Mar 19. doi: 10.1096/fj.201902816R. Epub ahead of print. PMID: 32190927.

PubMed ID: 32190927

Matsushita M, Shoji K, Takai N, Kawano R. Biological Nanopore Probe: Probing of Viscous Solutions in a Confined Nanospace. J Phys Chem B. 2020 Mar 26;124(12):2410-2416. doi: 10.1021/acs.jpcb.9b11096. Epub 2020 Feb 26. PMID: 32031807.

PubMed ID: 32031807

Sabirovas T, Valiūnienė A, Gabriunaite I, Valincius G. Mixed hybrid bilayer lipid membranes on mechanically polished titanium surface. Biochim Biophys Acta Biomembr. 2020 Feb 28;1862(6):183232. doi: 10.1016/j.bbamem.2020.183232. Epub ahead of print. PMID: 32119863.

PubMed ID: 32119863

Ramm F, Dondapati SK, Thoring L, Zemella A, Wüstenhagen DA, Frentzel H, Stech M, Kubick S. Mammalian cell-free protein expression promotes the functional characterization of the tripartite non-hemolytic enterotoxin from Bacillus cereus. Sci Rep. 2020 Feb 19;10(1):2887. doi: 10.1038/s41598-020-59634-8. PMID: 32076011; PMCID: PMC7031377.

PubMed ID: 32076011

Ji Z, Jordan M, Jayasinghe L, Guo P. Insertion of channel of phi29 DNA packaging motor into polymer membrane for high-throughput sensing. Nanomedicine. 2020 Feb 6;25:102170. doi: 10.1016/j.nano.2020.102170. Epub ahead of print. PMID: 32035271.

PubMed ID: 32035271

Yao F, Peng X, Su Z, Tian L, Guo Y, Kang XF. Crowding-Induced DNA Translocation through a Protein Nanopore. Anal Chem. 2020 Mar 3;92(5):3827-3833. doi: 10.1021/acs.analchem.9b05249. Epub 2020 Feb 20. PMID: 32048508.

PubMed ID: 32048508

Wongsirojkul N, Shimokawa N, Opaprakasit P, Takagi M, Hamada T. Osmotic-Tension-Induced Membrane Lateral Organization. Langmuir. 2020 Mar 24;36(11):2937-2945. doi: 10.1021/acs.langmuir.9b03893. Epub 2020 Mar 16. PMID: 32175748.

PubMed ID: 32175748

Hardenbrook NJ, Liu S, Zhou K, Ghosal K, Hong Zhou Z, Krantz BA. Atomic structures of anthrax toxin protective antigen channels bound to partially unfolded lethal and edema factors. Nat Commun. 2020 Feb 11;11(1):840. doi: 10.1038/s41467-020-14658-6. PMID: 32047164; PMCID: PMC7012834.

PubMed ID: 32047164

Das D, Bao H, Courtney KC, Wu L, Chapman ER. Resolving kinetic intermediates during the regulated assembly and disassembly of fusion pores. Nat Commun. 2020 Jan 13;11(1):231. doi: 10.1038/s41467-019-14072-7. PMID: 31932584; PMCID: PMC6957489.

PubMed ID: 31932584

Wang J, Li MY, Yang J, Wang YQ, Wu XY, Huang J, Ying YL, Long YT. Direct Quantification of Damaged Nucleotides in Oligonucleotides Using an Aerolysin Single Molecule Interface. ACS Cent Sci. 2020 Jan 22;6(1):76-82. doi: 10.1021/acscentsci.9b01129. Epub 2020 Jan 9. PMID: 31989027; PMCID: PMC6978832.

PubMed ID: 31989027

Vikraman D, Satheesan R, Kumar KS, Mahendran KR. Nanopore Passport Control for Substrate-Specific Translocation. ACS Nano. 2020 Jan 29:10.1021/acsnano.9b09408. doi: 10.1021/acsnano.9b09408. Epub ahead of print. PMID: 31976649.

PubMed ID: 31976649

Li J, Baxani DK, Jamieson WD, Xu W, Rocha VG, Barrow DA, Castell OK. Formation of Polarized, Functional Artificial Cells from Compartmentalized Droplet Networks and Nanomaterials, Using One-Step, Dual-Material 3D-Printed Microfluidics. Adv Sci (Weinh). 2019 Oct 24;7(1):1901719. doi: 10.1002/advs.201901719. PMID: 31921557; PMCID: PMC6947711.

PubMed ID: 31921557

Su Z, Juhaniewicz-Debinska J, Sek S, Lipkowski J. Water Structure in the Submembrane Region of a Floating Lipid Bilayer: The Effect of an Ion Channel Formation and the Channel Blocker. Langmuir. 2020 Jan 14;36(1):409-418. doi: 10.1021/acs.langmuir.9b03271. Epub 2019 Dec 23. PMID: 31815479.

PubMed ID: 31815479

Jiménez-Munguía I, Fedorov AK, Abdulaeva IA, Birin KP, Ermakov YA, Batishchev OV, Gorbunova YG, Sokolov VS. Lipid Membrane Adsorption Determines Photodynamic Efficiency of β-Imidazolyl-Substituted Porphyrins. Biomolecules. 2019 Dec 10;9(12):E853. doi: 10.3390/biom9120853. PMID: 31835568.

PubMed ID: 31835568

Fang Z, Liu L, Wang Y, Xi D, Zhang S. Unambiguous Discrimination of Multiple Protein Biomarkers by Nanopore Sensing with Double-Stranded DNA-Based Probes. Anal Chem. 2020 Jan 21;92(2):1730-1737. doi: 10.1021/acs.analchem.9b02965. Epub 2020 Jan 7. PMID: 31869203.

PubMed ID: 31869203

Snead WT, Zeno WF, Kago G, Perkins RW, Richter JB, Zhao C, Lafer EM, Stachowiak JC. BAR scaffolds drive membrane fission by crowding disordered domains. J Cell Biol. 2019 Feb 4;218(2):664-682. doi: 10.1083/jcb.201807119. Epub 2018 Nov 30. PMID: 30504247; PMCID: PMC6363457.

PubMed ID: 30504247

Cao J, Jia W, Zhang J, Xu X, Yan S, Wang Y, Zhang P, Chen HY, Huang S. Giant single molecule chemistry events observed from a tetrachloroaurate(III) embedded Mycobacterium smegmatis porin A nanopore. Nat Commun. 2019 Dec 11;10(1):5668. doi: 10.1038/s41467-019-13677-2.

PubMed ID: 31827098

Ouldali H, Sarthak K, Ensslen T, Piguet F, Manivet P, Pelta J, Behrends JC, Aksimentiev A, Oukhaled A. Electrical recognition of the twenty proteinogenic amino acids using an aerolysin nanopore. Nat Biotechnol. 2019 Dec 16. doi: 10.1038/s41587-019-0345-2. [Epub ahead of print]

PubMed ID: 31844293

Yamada T, Kamiya K, Osaki T, Takeuchi S. A pumpless solution exchange system for nanopore sensors. Biomicrofluidics. 2019 Nov 4;13(6):064104. doi: 10.1063/1.5123316. eCollection 2019 Nov.

PubMed ID: 31700563

Aminipour Z, Khorshid M, Keshvari H, Bonakdar S, Wagner P, Van der Bruggen B. Passive permeability assay of doxorubicin through model cell membranes under cancerous and normal membrane potential conditions. Eur J Pharm Biopharm. 2020 Jan;146:133-142. doi: 10.1016/j.ejpb.2019.10.011. Epub 2019 Nov 5.

PubMed ID: 31698041

Su Z, Wei Y, Kang XF. Simultaneous High-Resolution Detection of Bioenergetic Molecules using Biomimetic-Receptor Nanopore. Anal Chem. 2019 Dec 3;91(23):15255-15259. doi: 10.1021/acs.analchem.9b04268. Epub 2019 Nov 11.

PubMed ID: 31665602

Cao C, Cirauqui N, Marcaida MJ, Buglakova E, Duperrex A, Radenovic A, Dal Peraro M. Single-molecule sensing of peptides and nucleic acids by engineered aerolysin nanopores. Nat Commun. 2019 Oct 29;10(1):4918. doi: 10.1038/s41467-019-12690-9.

PubMed ID: 31664022

Diederichs T, Pugh G, Dorey A, Xing Y, Burns JR, Hung Nguyen Q, Tornow M, Tampé R, Howorka S. Synthetic protein-conductive membrane nanopores built with DNA. Nat Commun. 2019 Nov 4;10(1):5018. doi: 10.1038/s41467-019-12639-y.

PubMed ID: 31685824

Wang X, Agasid MT, Baker CA, Aspinwall CA. Surface Modification of Glass/PDMS Microfluidic Valve Assemblies Enhances Valve Electrical Resistance. ACS Appl Mater Interfaces. 2019 Sep 18;11(37):34463-34470. doi: 10.1021/acsami.9b12342. Epub 2019 Sep 9.

PubMed ID: 31496217

Restrepo-Pérez L, Huang G, Bohländer PR, Worp N, Eelkema R, Maglia G, Joo C, Dekker C. Resolving Chemical Modifications to a Single Amino Acid within a Peptide Using a Biological Nanopore. ACS Nano. 2019 Sep 19. doi: 10.1021/acsnano.9b05156. [Epub ahead of print]

PubMed ID: 31536327

Willems K, Ruić D, Biesemans A, Galenkamp NS, Van Dorpe P, Maglia G. Engineering and Modeling the Electrophoretic Trapping of a Single Protein Inside a Nanopore. ACS Nano. 2019 Aug 20. doi: 10.1021/acsnano.8b09137. [Epub ahead of print]

PubMed ID: 31403770

Wang H, Kasianowicz JJ, Robertson JWF, Poster DL, Ettedgui J. A comparison of ion channel current blockades caused by individual poly(ethylene glycol) molecules and polyoxometalate nanoclusters. Eur Phys J E Soft Matter. 2019 Jun 28;42(6):83. doi: 10.1140/epje/i2019-11838-3.

PubMed ID: 31250227

Baxter AM, Wittenberg NJ. Excitation of Fluorescent Lipid Probes Accelerates Supported Lipid Bilayer Formation via Photosensitized Lipid Oxidation. Langmuir. 2019 Sep 3;35(35):11542-11549. doi: 10.1021/acs.langmuir.9b01535. Epub 2019 Aug 22.

PubMed ID: 31411482

Hui Li, Shaoying Wang, Zhouxiang Ji, Congcong Xu, Lyudmila S. Shlyakhtenko, Peixuan Guo. Construction of RNA nanotubes. August 2019;8:1952-1958.


Megalathan A, Cox BD, Wilkerson PD, Kaur A, Sapkota K, Reiner JE, Dhakal S. Single-molecule analysis of i-motif within self-assembled DNA duplexes and nanocircles. Nucleic Acids Res. 2019 Jul 9. pii: gkz565. doi: 10.1093/nar/gkz565. [Epub ahead of print]

PubMed ID: 31287873

Su Z, Ho D, Merrill AR, Lipkowski J. In Situ Electrochemical and PM-IRRAS Studies of Colicin E1 Ion Channels in the Floating Bilayer Lipid Membrane. Langmuir. 2019 Jun 25;35(25):8452-8459. doi: 10.1021/acs.langmuir.9b01251. Epub 2019 Jun 13.

PubMed ID: 31194562

Liu YM, Fang XY, Fang F, Wu ZY. Investigation of hairpin DNA and chelerythrine interaction by a single bio-nanopore sensing interface. Analyst. 2019 Jul 7;144(13):4081-4085. doi: 10.1039/c9an00113a. Epub 2019 Jun 6.

PubMed ID: 31169284

Liu L, Fang Z, Zheng X, Xi D. Nanopore-Based Strategy for Sensing of Copper(II) Ion and Real-Time Monitoring of a Click Reaction. ACS Sens. 2019 May 24;4(5):1323-1328. doi: 10.1021/acssensors.9b00236. Epub 2019 May 10.

PubMed ID: 31050287

Tan S, Zhang L, Yu L, Xu L. Free-Standing Lipid Bilayers Based on Nanopore Array and Ion Channel Formation. J Nanosci Nanotechnol. 2019 Nov 1;19(11):7149-7155. doi: 10.1166/jnn.2019.16674.

PubMed ID: 31039869

Janilson J. S. Júnior, Thereza A. Soares, Laércio Pol-Fachin, Dijanah C. Machado, Victor H. Rusu, Juliana P. Aguiar, and Cláudio G. Rodrigues. Alpha-hemolysin nanopore allows discrimination of the microcystins variants. (Paper) RSC Adv., 2019, 9, 14683-14691. doi: 10.1039/C8RA10384D


Santos HJ, Imai K, Makiuchi T, Tomii K, Horton P, Nozawa A, Okada K, Tozawa Y, Nozaki T. Novel lineage-specific transmembrane β-barrel proteins in the endoplasmic reticulum of Entamoeba histolytica. FEBS J. 2019 May 2. doi: 10.1111/febs.14870. [Epub ahead of print]

PubMed ID: 31070654

Lee MT, Hung WC, Huang HW. Rhombohedral trap for studying molecular oligomerization in membranes: application to daptomycin. Soft Matter. 2019 May 29;15(21):4326-4333. doi: 10.1039/c9sm00323a.

PubMed ID: 31070654

Puthumadathil N, Jayasree P, Santhosh Kumar K, Nampoothiri KM, Bajaj H, Mahendran KR. Detecting the structural assembly pathway of human antimicrobial peptide pores at single-channel level. Biomater Sci. 2019 Jun 5. doi: 10.1039/c9bm00181f. [Epub ahead of print]

PubMed ID: 31165117

Vu T, Borgesi J, Soyring J, D"Alia M, Davidson SL, Shim J. Employing LiCl salt gradient in the wild-type α-hemolysin nanopore to slow down DNA translocation and detect methylated cytosine. Nanoscale. 2019 May 30;11(21):10536-10545. doi: 10.1039/c9nr00502a.

PubMed ID: 31116213

Ji Z, Guo P. Channel from bacterial virus T7 DNA packaging motor for the differentiation of peptides composed of a mixture of acidic and basic amino acids. Biomaterials. 2019 Sep;214:119222. doi: 10.1016/j.biomaterials.2019.119222. Epub 2019 May 21.

PubMed ID: 31158604

Wang K, Preisler SS, Zhang L, Cui Y, Missel JW, Grønberg C, Gotfryd K, Lindahl E, Andersson M, Calloe K, Egea PF, Klaerke DA, Pusch M, Pedersen PA, Zhou ZH, Gourdon P. Structure of the human ClC-1 chloride channel. PLoS Biol. 2019 Apr 25;17(4):e3000218. doi: 10.1371/journal.pbio.3000218. eCollection 2019 Apr.

PubMed ID: 31022181

Larimi MG, Mayse LA, Movileanu L. Interactions of a Polypeptide with a Protein Nanopore Under Crowding Conditions. ACS Nano. 2019 Apr 23;13(4):4469-4477. doi: 10.1021/acsnano.9b00008. Epub 2019 Apr 3.

PubMed ID: 30925041

Noakes MT, Brinkerhoff H, Laszlo AH, Derrington IM, Langford KW, Mount JW, Bowman JL, Baker KS, Doering KM, Tickman BI, Gundlach JH. Increasing the accuracy of nanopore DNA sequencing using a time-varying cross membrane voltage. Nat Biotechnol. 2019 Apr 22. doi: 10.1038/s41587-019-0096-0. [Epub ahead of print]

PubMed ID: 31011178

Khoury ME, Winterstein T, Weber W, Stein V, Schlaak HF, Thiel G. Photolithographic Fabrication of Micro Apertures in Dry Film Polymer Sheets for Channel Recordings in Planar Lipid Bilayers. J Membr Biol. 2019 Mar 12. doi: 10.1007/s00232-019-00062-9. [Epub ahead of print]

PubMed ID: 30863900

Zhao Y, Liu L, Tu Y, Wu HC. Investigating the effect of mono- and multivalent counterions on the conformation of poly(styrenesulfonic acid) by nanopores. Electrophoresis. 2019 Feb 27. doi: 10.1002/elps.201800539. [Epub ahead of print]

PubMed ID: 30811621

Wang J, Fertig N, Ying YL. Real-time monitoring β-lactam/β-lactamase inhibitor (BL/BLI) mixture towards the bacteria porin pathway at single molecule level. Anal Bioanal Chem. 2019 Mar 2. doi: 10.1007/s00216-019-01650-3. [Epub ahead of print]

PubMed ID: 30824965

Golla VK, Sans-Serramitjana E, Pothula KR, Benier L, Bafna JA, Winterhalter M, Kleinekathöfer U. Fosfomycin Permeation through the Outer Membrane Porin OmpF. Biophys J. 2019 Jan 22;116(2):258-269. doi: 10.1016/j.bpj.2018.12.002. Epub 2018 Dec 8.

PubMed ID: 30616836

Coker HLE, Cheetham MR, Kattnig DR, Wang YJ, Garcia-Manyes S, Wallace MI. Controlling Anomalous Diffusion in Lipid Membranes. Biophys J. 2019 Mar 19;116(6):1085-1094. doi: 10.1016/j.bpj.2018.12.024. Epub 2019 Jan 16.

PubMed ID: 30846364

Zhang L, Wang K, Klaerke DA, Calloe K, Lowrey L, Pedersen PA, Gourdon P, Gotfryd K. Purification of Functional Human TRP Channels Recombinantly Produced in Yeast. Cells. 2019 Feb 11;8(2). pii: E148. doi: 10.3390/cells8020148.

PubMed ID: 30754715

Schönrock M, Thiel G, Laube B. Coupling of a viral K+-channel with a glutamate-binding-domain highlights the modular design of ionotropic glutamate-receptors. Commun Biol. 2019 Feb 22;2:75. doi: 10.1038/s42003-019-0320-y. eCollection 2019.

PubMed ID: 30820470

Inada M, Kinoshita M, Sumino A, Oiki S, Matsumori N. A concise method for quantitative analysis of interactions between lipids and membrane proteins. Anal Chim Acta. 2019 Jun 20;1059:103-112. doi: 10.1016/j.aca.2019.01.042. Epub 2019 Feb 1.

PubMed ID: 30876624

Huang G, Voet A, Maglia G. FraC nanopores with adjustable diameter identify the mass of opposite-charge peptides with 44 dalton resolution. Nat Commun. 2019 Feb 19;10(1):835. doi: 10.1038/s41467-019-08761-6.

PubMed ID: 30783102

Krishnan R S, Satheesan R, Puthumadathil N, Kumar KS, Jayasree P, Mahendran KR. Autonomously Assembled Synthetic Transmembrane Peptide Pore. J Am Chem Soc. 2019 Feb 20;141(7):2949-2959. doi: 10.1021/jacs.8b09973. Epub 2019 Feb 12.

PubMed ID: 30702873

Huang G, Voet A, Maglia G. FraC nanopores with adjustable diameter identify the mass of opposite-charge peptides with 44 dalton resolution. Nat Commun. 2019 Feb 19;10(1):835. doi: 10.1038/s41467-019-08761-6.

PubMed ID: 30783102

Krishnan R S, Satheesan R, Puthumadathil N, Kumar KS, Jayasree P, Mahendran KR. Autonomously Assembled Synthetic Transmembrane Peptide Pore. J Am Chem Soc. 2019 Feb 20;141(7):2949-2959. doi: 10.1021/jacs.8b09973. Epub 2019 Feb 12.

PubMed ID: 30702873

Dugger ME, Baker CA. Automated formation of black lipid membranes within a microfluidic device via confocal fluorescence feedback-controlled hydrostatic pressure manipulations. Anal Bioanal Chem. 2019 Jan 7. doi: 10.1007/s00216-018-1550-4. [Epub ahead of print]

PubMed ID: 30617393

Mohid SA, Ghorai A, Ilyas H, Mroue KH, Narayanan G, Sarkar A, Ray SK, Biswas K, Bera AK, Malmsten M, Midya A, Bhunia A. Application of tungsten disulfide quantum dot-conjugated antimicrobial peptides in bio-imaging and antimicrobial therapy. Colloids Surf B Biointerfaces. 2019 Jan 8;176:360-370. doi: 10.1016/j.colsurfb.2019.01.020. [Epub ahead of print]

PubMed ID: 30658284

Bhamidimarri SP, Zahn M, Prajapati JD, Schleberger C, Söderholm S, Hoover J, West J, Kleinekathöfer U, Bumann D, Winterhalter M, van den Berg B. A Multidisciplinary Approach toward Identification of Antibiotic Scaffolds for Acinetobacter baumannii. Structure. 2019 Feb 5;27(2):268-280.e6. doi: 10.1016/j.str.2018.10.021. Epub 2018 Dec 13.

PubMed ID: 30554842

Golla VK, Sans-Serramitjana E, Pothula KR, Benier L, Bafna JA, Winterhalter M, Kleinekathöfer U. Fosfomycin Permeation through the Outer Membrane Porin OmpF. Biophys J. 2019 Jan 22;116(2):258-269. doi: 10.1016/j.bpj.2018.12.002. Epub 2018 Dec 8.

PubMed ID: 30616836

Yang J, Wang Y, Li M, Ying YL, Long YT. Direct Sensing of Single Native RNA with a Single-Biomolecule Interface of Aerolysin Nanopore. Langmuir. 2018 Nov 21. doi: 10.1021/acs.langmuir.8b03264. [Epub ahead of print].

PubMed ID: 30462509

Chengxiang Zhang, Weiyu Zhao , Cong Bian, Xucheng Hou, Binbin Deng, David W. McComb, Xiaofang Chen, and Yizhou Dong. Antibiotic-Derived Lipid Nanoparticles to Treat Intracellular Staphylococcus aureus. ACS Appl. Bio Mater., Article ASAP


Challita EJ, Freeman EC. Hydrogel Microelectrodes for the Rapid, Reliable, and Repeatable Characterization of Lipid Membranes. Langmuir. 2018 Nov 23. doi: 10.1021/acs.langmuir.8b02867. [Epub ahead of print]

PubMed ID: 30468580

Patrick Urban, Stefanie D. Pritzl, David B. Konrad, James A. Frank, Carla Pernpeintner, Christian R. Roeske, Dirk Trauner, and Theobald Lohmueller. Light-Controlled Lipid Interaction and Membrane Organization in Photolipid Bilayer Vesicles. Langmuir, Just Accepted Manuscript. DOI: 10.1021/acs.langmuir.8b03241. Publication Date (Web): October 10, 2018

PubMed ID: 30346771

Sacconi A, Tadini-Buoninsegni F, Tiribilli B, Margheri G. A Comparative Study of Phosphatidylcholine versus Phosphatidylserine-based Solid Supported Membranes for the Preparation of Liposome-Rich Interfaces. Langmuir. 2018 Sep 14. doi: 10.1021/acs.langmuir.8b02397. [Epub ahead of print]

PubMed ID: 30217106

Burden DL, Kim D, Cheng W, Chandler Lawler E, Dreyer DR, Burden LK. Mechanically Enhancing Planar Lipid Bilayers with a Minimal Actin Cortex. Langmuir. 2018 Aug 27. doi: 10.1021/acs.langmuir.8b01847. [Epub ahead of print]

PubMed ID: 30149716

Beltramo PJ, Scheidegger L, Vermant J. Toward Realistic Large-Area Cell Membrane Mimics: Excluding Oil, Controlling Composition, and Including Ion Channels. Langmuir. 2018 May 14. doi: 10.1021/acs.langmuir.8b00837.

PubMed ID: 29715042

Lindsey, H., N.O. Petersen, and S.I. Chan. (1979). Physicochemical characterization of 1,2-diphytanoyl-sn-glycero-3-phosphocholine in model membrane systems. Biochim Biophys Acta 555:147-67. [PubMed]

PubMed ID: 476096

Villar, G., A.D. Graham, and H. Bayley. (2013). A tissue-like printed material. Science 340:48-52. [PubMed]

PubMed ID: 23559243

Pan, J., X. Cheng, F.A. Heberle, B. Mostofian, N. Kucerka, P. Drazba, and J. Katsaras. (2012). Interactions between Ether Phospholipids and Cholesterol As Determined by Scattering and Molecular Dynamics Simulations. J Phys Chem B [PubMed]

PubMed ID: 23199292

Tristram-Nagle, S., Kim, D.J., Akhunzada, N., Kucerka, N., Mathai, J.C., Katsaras, J., Zeidel, M., Nagle, J.F. (2010) Structure and water permeability of fully hydrated diphytanoylPC. Chem Phys Lipids.163:630-7. [PubMed]

PubMed ID: 20447383

Redwood, W.R., Pfeiffer, F.R., Weisbach, J.A., Thompson, T.E. (1971) Physical properties of bilayer membranes formed from a synthetic saturated phospholipid in n-decane. Biochim Biophys Acta.233:1-6. [PubMed]

PubMed ID: 5579131
Transition Temperature of Diphytanoyl PC

Transition Temperature Of Diphytanoyl Pc

Certificates of Analysis
  • Certificate of Analysis(Lot No. 850356C-200MG-A-145and 5649CNA145)
  • Certificate of Analysis(Lot No. 850356C-25MG-A-145and 5649CJA145)
  • Certificate of Analysis(Lot No. 850356C-500MG-A-145and 5649CPA145)
  • Certificate of Analysis(Lot No. 850356P-200MG-A-145and 5649PNA145)
  • Certificate of Analysis(Lot No. 850356P-25MG-A-145and 5649PJA145)
  • Certificate of Analysis(Lot No. 850356P-25MG-B-145and 5649PJB145)
  • Certificate of Analysis(Lot No. 850356P-500MG-A-145and 5649PPA145)
  • Certificate of Analysis(Lot No. 850356P-25MG-C-145and 5649PJC145)
  • Certificate of Analysis(Lot No. 850356P-CONF-A-145and 5649PWA145)
  • Certificate of Analysis(Lot No. 850356P-25MG-E-145and 5649PJE145)
  • Certificate of Analysis(Lot No. 850356C-25MG-B-145and 5649CJB145)
  • Certificate of Analysis(Lot No. 850356C-200MG-B-145and 5649CNB145)
  • Certificate of Analysis(Lot No. 850356P-500MG-B-145and 5649PPB145)
  • Certificate of Analysis(Lot No. 850356P-200MG-B-145and 5649PNB145)
  • Certificate of Analysis(Lot No. 850356P-500MG-C-145and 5649PPC145)
  • Certificate of Analysis(Lot No. 850356P-200MG-C-145and 5649PNC145)
  • Certificate of Analysis(Lot No. 850356P-25MG-F-145and 5649PJF145)
  • Certificate of Analysis(Lot No. 850356P-10G-A-145and 5649PSA145)
  • Certificate of Analysis(Lot No. 850356P-5G-A-146and 5649PRA146)
  • Certificate of Analysis(Lot No. 850356C-25MG-C-145and 5649CJC145)
  • Certificate of Analysis(Lot No. 850356P-500MG-D-145and 5649PPD145)
  • Certificate of Analysis(Lot No. 850356P-200MG-D-145and 5649PND145)
  • Certificate of Analysis(Lot No. 850356C-200MG-C-145and 5649CNC145)
  • Certificate of Analysis(Lot No. 850356P-5MG-A-146and 5649PHA146)
  • Certificate of Analysis(Lot No. 850356C-200MG-A-146and 5649CNA146)
  • Certificate of Analysis(Lot No. 850356P-500MG-A-146and 5649PPA146)
  • Certificate of Analysis(Lot No. 850356C-200MG-B-146and 5649CNB146)
  • Certificate of Analysis(Lot No. 850356P-200MG-A-146and 5649PNA146)
  • Certificate of Analysis(Lot No. 850356C-25MG-A-146and 5649CJA146)
  • Certificate of Analysis(Lot No. 850356P-25MG-A-146and 5649PJA146)
  • Certificate of Analysis(Lot No. 850356C-500MG-A-146and 5649CPA146)
  • Certificate of Analysis(Lot No. 850356C-200MG-C-146and 5649CNC146)
  • Certificate of Analysis(Lot No. 850356C-500MG-B-146and 5649CPB146)
  • Certificate of Analysis(Lot No. 850356P-500MG-B-146and 5649PPB146)
  • Certificate of Analysis(Lot No. 850356P-25MG-B-146and 5649PJB146)
  • Certificate of Analysis(Lot No. 850356C-200MG-D-146and 5649CND146)
  • Certificate of Analysis(Lot No. 850356P-25MG-C-146and 5649PJC146)
  • Certificate of Analysis(Lot No. 850356C-200MG-E-146and 5649CNE146)
  • Certificate of Analysis(Lot No. 850356C-25MG-B-146and 5649CJB146)
  • Certificate of Analysis(Lot No. 850356C-25MG-C-146and 5649CJB146)
  • Certificate of Analysis(Lot No. 850356C-500MG-C-146and 5649CPC146)
  • Certificate of Analysis(Lot No. 850356C-200MG-F-146and 5649CNF146)
  • Certificate of Analysis(Lot No. 850356C-25MG-D-146and 5649CJD146)
  • Certificate of Analysis(Lot No. 850356P-500MG-G-146and 5649PPG146)
  • Certificate of Analysis(Lot No. 850356P-500MG-F-146and 5649PPF146)
  • Certificate of Analysis(Lot No. 850356P-25MG-H-146and 5649PJH146)
  • Certificate of Analysis(Lot No. 850356P-200MG-E-146and 5649PNE146)
  • Certificate of Analysis(Lot No. 850356C-200MG-G-146and 5649CNG146)
  • Certificate of Analysis(Lot No. 850356C-25MG-E-146and 5649CJE146)
  • Certificate of Analysis(Lot No. 850356P-200MG-F-146and 5649PNF146)
  • Certificate of Analysis(Lot No. 850356P-25MG-I-146and 5649PJI146)
  • Certificate of Analysis(Lot No. 850356C-25MG-F-146and 5649CJF146)
  • Certificate of Analysis(Lot No. 850356C-200MG-H-146and 5649CNH146)
  • Certificate of Analysis(Lot No. 850356P-25MG-J-146and 5649PJJ146)
  • Certificate of Analysis(Lot No. 850356P-200MG-G-146and 5649PNG146)
  • Certificate of Analysis(Lot No. 850356P-500MG-H-146and 5649PPH146)
Base Price:${originalprice|money}
Custom Packaging:(${concentration} @$4.00/ea. + $100)${custompackagingtotal|money}
Packaging:${concentration}
Item Total:${totalprice|money}
(Sales Tax may apply)
Please select an option above.
${sku} - ${concentration}
品牌介绍
Avanti Polar Lipids 阿凡提极地脂质公司,有着50年的历史,创造了最高纯度的脂类产品。我们对高质量和独特的产品的热情只会被我们在市场上的良好声誉所超越。 Since its spartan beginnings in a 900 square foot rented laboratory space, Avanti has established a 25 acre manufacturing campus comprised of 11 buildings which house our manufacturing, formulation, analytical, and administrative units. Operations were moved to the current site in Alabaster, Alabama, in 1990, and we have continued to expand our capabilities and attract talented personnel to develop new and innovative products. With over 120 employees diligently working to provide high quality revolutionary lipid products, we have successfully grown our product offering to well over 2000 unique lipids, antibodies, and lipid research tools while maintaining the founding vision established by Dr. Shaw in 1967. Quite an accomplishment considering we started with a catalog containing only a handful of lipids isolated from plant and animal sources. 品牌 货号 名称 规格 Avanti Polar Lipids 860853 16:0 Azido Coenzyme A 1mg Avanti Polar Lipids 900415  Oleic Acid (18-azido) 5mg 25mg Avanti Polar Lipids 900414 16:0(alkyne)-18:1 PE 1mg 5mg Avanti Polar Lipids 900413 16:0(alkyne)-18:1 PC 1mg 5mg Avanti Polar Lipids 860831  C6(6-azido) Ceramide 5mg Avanti Polar Lipids 860832 C6(6-azido) LacCer 5mg Avanti Polar Lipids 860833  C6(6-azido) GalCer 5mg Avanti Polar Lipids 860834 C6(6-azido) GluCer 5mg Avanti Polar Lipids 900600 PhotoClick Sphingosine 100ug 250ug Avanti Polar Lipids 810340 Click PI(4,5)P2-azido 100ug Avanti Polar Lipids 900400 Palmitic acid (15-yne) 1mg 5mg Avanti Polar Lipids 900404 pacFA Ceramide 1mg Avanti Polar Lipids 900405 pacFA GlcCer 1mg Avanti Polar Lipids 900406 pacFA GalCer 1mg Avanti Polar Lipids 900407 16:0-pacFA PC 1mg